



1

# Internet of Radio Light VLC Receiver

Dr. Bastien Béchadergue bastien.bechadergue@oledcomm.net





Content



### **1. Background and Objectives**

### 2. VLC Receiver Proposed

### **3. Performance Evaluation**

### 4. Conclusions





Content



### **1. Background and Objectives**

### **2. VLC Receiver Proposed**

### **3. Performance Evaluation**

### 4. Conclusions







From the Transmitted Signal...

- Transmitted signal = OFDM signal with subcarriers spread over a fixed channel.
- Channel characteristics:



• **Conclusion**: The VLC receiver must have a flat electrical bandwidth from 10MHz to 20MHz.





oledco



...and Light Source Characteristics...

#### **Electrical bandwidth**



• **Conclusion**: The VLC receiver must detect white light with high sensitvity and take into account the light source bandwidth.

IEEE BMSB 2020 – H2020 5G IoRL Workshop – © 2020 IoRL consortium. All rights reserved

#### **Optical bandwidth and Field-of-Emission**





### ...to the Received Signal

• On the receiver side, the main goal is to optimize the signal-to-noise ratio (SNR), defined as:









### Main Parameters of a Photoreceiver for VLC

#### **Photosensitivity**



- Non-null sensitivity in the visible wavelength range needed.
- The higher the better!

#### **Sensitive Area**



- The larger the better...but...
- $\nearrow$  sensitive area  $\rightarrow \nearrow$  capacitance.
- Tradeoff on the sensitive area.

#### **Optical Gain**



Relative sensitivity (%)

intro 
interpretation gain → 
interpretation received power.

.

- $\nearrow$  field-of-view  $\rightarrow \nearrow$  coverage.
- $\nearrow$  gain  $\rightarrow \$  field-of-view.
- Tradeoff on the gain pattern.

#### oledcom





### Off-the-Shelf Photoreceiver Benchmark

| Reference               | Technology | Max. sensitivity  | Sensitive area       | Bandwidth      |
|-------------------------|------------|-------------------|----------------------|----------------|
| Thorlabs PDA100A        | Si PIN     | 0.72 A/W @ 960 nm | 75.4 mm²             | DC – 11 MHz    |
| Thorlabs PDA8A2         | Si PIN     | 0.56 A/W @ 820 nm | 0.5 mm²              | DC – 50 MHz    |
| Thorlabs APD130A2(/M)   | Si APD     | 25 A/W @ 600 nm   | 0.78 mm²             | DC – 50 MHz    |
| Thorlabs APD430A2(/M)   | Si APD     | 50 A/W @ 600 nm   | 0.03 mm²             | DC – 400 MHz   |
| Hamamatsu S12702-04     | Si APD     | 15 A/W @ 800 nm   | 7.07 mm²             | 4 kHz – 80 MHz |
| Hamamatsu S12702-12     | Si APD     | 12 A/W @ 620 nm   | 7.07 mm <sup>2</sup> | 4 kHz – 40 MHz |
| Reference photoreceiver |            |                   |                      |                |





### *S12702-12 Receiver vs Custom-Made Receiver Objectives*

**IGRL** Internet of Radio Light Background and Objectives

- Main advantages:
  - Large sensitive area (7.07 mm<sup>2</sup>),
  - Matching bandwidth (4 kHz to 40 MHz),
  - High photosensitivity, optimized for visible light,
  - Possibility to add an optical lens or concentrator.
- Main drawbacks:
  - Large form factor (90x50 mm),
  - APD needs large bias voltage (> 200V),
  - Very expensive (several 100s €).

**Conclusion:** The goal is to design a cheap and compact custom photoreceiver based on Si PIN photodiodes.





Wavelength (nm)





Content



### **1. Background and Objectives**

### 2. VLC Receiver Proposed

**3. Performance Evaluation** 

4. Conclusions





oledcom

## VLC Receiver Proposed



### Preliminary Link Budget Evaluation

- State-of-the art link budget model assumes the light sources are point sources.
- Spots, light panels etc.  $\neq$  point sources.
- **Consequence:** A link budget model with extended light sources has been proposed in [1].



[1] C. Valencia-Estrada, B. Béchadergue, and J. Garcia-Marquez, "Full Field Radiant Flux Distribution of Multiple Tilted Flat Lambertian Light Sources", IEEE Open Journal of the Communications Society, vol. 1, pp. 927-942, 2020.



### VLC Receiver Proposed



### Receiver Architecture

• Architecture:



- Components Role:
  - Optical module: Increase the VLC light flux collected and concentrated on the PD.
  - Si PIN PD: Convert light flux into a photocurrent.
  - Transimpedance amplifier (TIA): Convert the photocurrent into an amplified voltage signal.
  - Post-Equalization: Extends the receiver bandwidth.
  - Amplifier & Filter: Signal processing for adaptation to the VLC baseband input.





### **VLC Receiver Proposed**











### **VLC Receiver Proposed**



Resulting VLC Receiver





- 4 photodiodes to increase sensitive area in a circuit designed to avoid bandwidth reduction
- SMA interface for connection with the baseband
- USB interface for power supply
- Infrared LED integrated to add a transmitter for test purpose
- Dimensions: 48 mm diameter, 6 mm thickness





Content



**1. Background and Objectives** 

**2. VLC Receiver Proposed** 

**3. Performance Evaluation** 

4. Conclusions







#### Reference Receiver Tests: Set-Up



oledcom





### Reference Receiver Tests: System Calibration

EVM of PDSCH/PBCH with Different USRP

Transmitting Gains

EVM of PDSCH and PBCH with Different Bandwidths



- Best EVM: 3.75% with -3 dBm Tx power (☑ 64QAM)
- Best EVM: 3.01% at 5MHz bandwidth (☑ 256QAM).
  Worst EVM: 9.37 % at 15MHz (☑ 64QAM).

#### oledcom



oledcom

## **Performance Evaluation**



### Reference Receiver Tests: EVM and Data Rate

EVM of PDSCH and PBCH with Different Tx/Rx Distances (without Tx lens)



- Maximum distance: 180 cm with 5.82%
   EVM of PDSCH (☑ 64QAM).
- Maximum throughput: 31.44 Mbps (with 64QAM and 772/1024 code rate)

EVM of PDSCH with Different Tx/Rx Angles



- Best EVM: Obtained with aligned Tx/Rx (0°).
- With Tx angle =  $0^{\circ}$  / Rx angle =  $45^{\circ}$  $\rightarrow$  EVM of 6.72% (🗹 64QAM).



oledcom

## **Performance Evaluation**



### Custom Receiver Tests: Bandwidth

#### **PIN PD-Based Receiver Bandwidth**



- 3dB bandwidth of 38 MHz
- 0.5dB gain variation over the interval 10 – 20 MHz

#### Infrared Test LED-Based Transmitter Bandwidth



- 3dB bandwidth of 20 MHz
- 1.5 dB gain variation over the interval 10 20 MHz





### Custom Receiver Tests: Set-Up (1/2)

- **Goal:** Evaluate the best performance achievable with the designed receiver. .
- **Problems:** ٠
  - No white light source available with enough bandwidth,
  - No 5G-NR MAC and PHY available at Oledcomm. ٠
- **Solution:** Use of a custom-made ITU-T G.vlc baseband for light communication with the ۲ infrared test LED embedded on the receiver boards.







Custom Receiver Tests: Set-Up (2/2)



Infrared access point (with photodiodes to receive uplink data)

LC receiver (with infrared LED enabled to send uplink data)

oledcom





### Custom Receiver Tests: Data Rate vs Coverage

- Data rate  $R_b$ :
  - Maximum of 100 Mbps
  - Minimum of 20 Mbps
- Coverage area:
  - Full coverage of 11 m<sup>2</sup>,
  - Coverage with  $R_b > 50$  Mbps of 10 m<sup>2</sup>,
  - Coverage with  $R_b > 75$  Mbps of 5 m<sup>2</sup>,
  - Coverage with  $R_b > 90$  Mbps of 2.5 m<sup>2</sup>.







Content



**1. Background and Objectives** 

**2. VLC Receiver Proposed** 

**3. Performance Evaluation** 

4. Conclusions









### Summary and Future Works

- In summary:
  - Design of a cheap and compact photoreceiver module adapted to light communication over channels of at least 20 MHz bandwidth,
  - ✓ Data rate of up to 100 Mbps (even 1 Gbps with a 150 MHz bandwidth receiver),
  - ✓ Coverage of  $11 \text{ m}^2$  (10 m<sup>2</sup> more than 50 Mbps),
- Future works:
  - ✓ Tests of this receiver in the IoRL system with white LED transmitter,
  - ✓ Tests of this receiver in the IoRL system with infrared transmitter.









- Projet IoRL has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 761992.
- This presentation reflects the author's view, only, and the Commission is not responsible for any use that may be made of the information provided.







## Thank you for your attention

### Contacts: bastien.bechadergue@oledcomm.net loRL-contact@5g-ppp.eu

Project Website: https://iorl.5g-ppp.eu/





[2] J. C. Valencia-Estrada, J. Garcia-Marquez, X. Zhang, and L. Shi, "Freeform compound concentrators for optical wireless communications", in 2019 Global LiFi Congress (GLC), June 2019.

IEEE BMSB 2020 - H2020 5G IoRL Workshop - © 2020 IoRL consortium. All rights reserved

oledcom