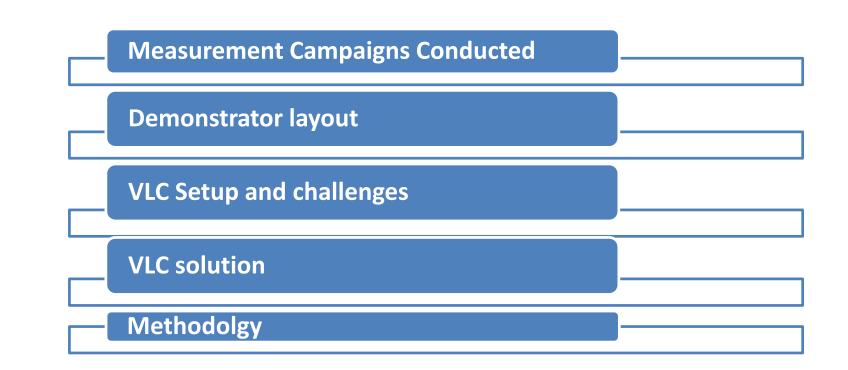


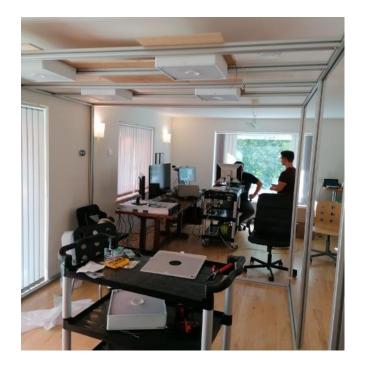
IoRL Measurement Campaign


by Brunel

Young Professional Workshop

Introduction

Demonstrator Overview


Aluminium Frame

Avoid damage to Research Establishment
Freedom to adjust system positions

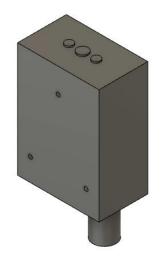
Mounts 4 Ceiling light design RRLH's

Conducting

- VLC Positioning tests
- □ VLC EVM tests
- Mmwave EVM tests

VLC EVM Experiment setup

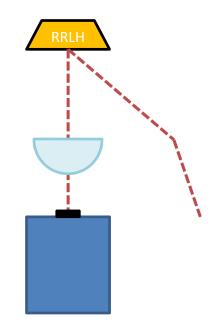
- Paper cm grid laid out on the floor
- Plumb line used to measure the centre points of RRLH's
- Measurements to be taken in along the floor 54cm in each 45 degree angle from the RRLH centre point



VLC Receiver module

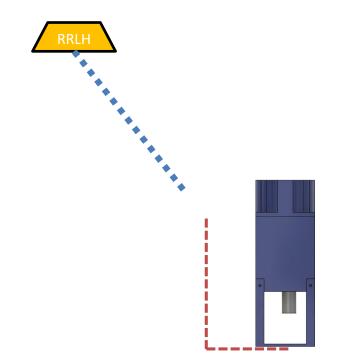
Receiver housing

- □ Holds Receiver module upright
- Fixes lens at required distance from the photodiode
- Provides reference point for centre positioning



□ Lens required to focus the signal Lab testing had all been conducted with the Tx at 0 degrees in reference to the Rx

- Focal length of lens used so large that small horizontal translation caused the light to shift away from the photodiode and cut the signal.
- Drastic loss of signal and no positioning possible



VLC solutions

- Fish eye lenses with shorter focal lengths
 - Light Intensity not strong enough
- Angling the receiver to reintroduce Line of Sight transmission
 - Caused the centre point to deviate from its true position

VLC Gimbal

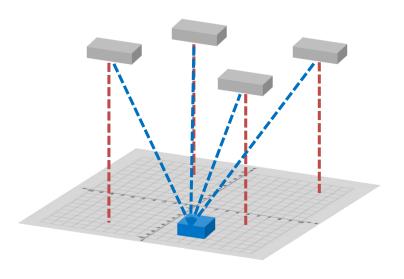
- □ Maintain use of existing large lens
- □ Maintains the centre point of receiver
- Standard benefits of previous receiver housing
- Protractors included to measure angles

VLC EVM Measurements

All measurements now to taken with the receiver both in a horizontal and angled position

All recorded at floor level

Storing EVM measurement data from the User Terminal at each point

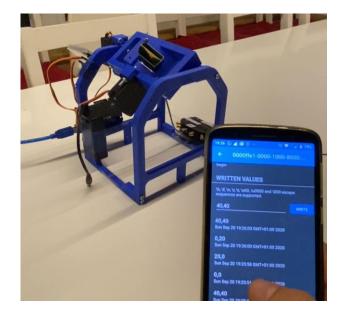

VLC Positioning Experiments

Given the need to angle the receiver to maintain signal, all position data was recorded with the receiver angled towards the transmitting RRLH.

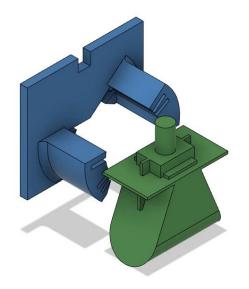
One position measurement

- ❑ Angle towards RRLH 1
- **G** Record UE received subcarrier strengths
- Repeat for all four RRLH's

Test Conducted at both floor level and Tabletop height (0.9m from floor level)



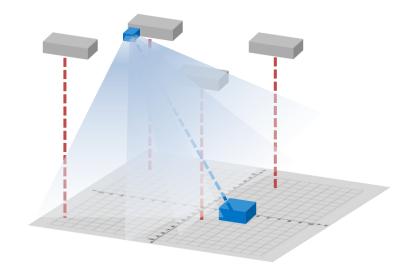
MmWave Gimbal



Tx mount

MMW EVM Experiments

Using a single mmWave Transmitter fixed to the side of a RRLH using the adjustable antenna mount


All tests conducted with the Rx **angled** towards the Tx and facing **vertically** upwards

Tests conducted

- Tx @ 0 degrees Rx @ 2 heights
- Tx @ 30 degrees Rx @ 1 heights
- Tx @ 40 degrees Rx @ 2 heights

The two heights were floor level and a tabletop 0.7m from floor level

Due to the polarisation of the antennas Rx was always kept in parallel with Tx

IoRL partners

Fraunhofer IIS

VIOTECH

ferrovial agroman

Young Professional Workshop

© 2020 IoRL consortium. All rights reserved